Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565403

RESUMO

BACKGROUND: Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW: This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW: The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.

2.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , Camundongos
3.
Nat Commun ; 15(1): 2083, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453952

RESUMO

Purinergic signaling plays a causal role in the pathogenesis of inflammatory bowel disease. Among purinoceptors, only P2Y14R is positively correlated with inflammatory score in mucosal biopsies of ulcerative colitis patients, nevertheless, the role of P2Y14R in ulcerative colitis remains unclear. Here, based on the over-expressions of P2Y14R in the intestinal epithelium of mice with experimental colitis, we find that male mice lacking P2Y14R in intestinal epithelial cells exhibit less intestinal injury induced by dextran sulfate sodium. Mechanistically, P2Y14R deletion limits the transcriptional activity of cAMP-response element binding protein through cAMP/PKA axis, which binds to the promoter of Ripk1, inhibiting necroptosis of intestinal epithelial cells. Furthermore, we design a hierarchical strategy combining virtual screening and chemical optimization to develop a P2Y14R antagonist HDL-16, which exhibits remarkable anti-colitis effects. Summarily, our study elucidates a previously unknown mechanism whereby P2Y14R participates in ulcerative colitis, providing a promising therapeutic target for inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Masculino , Animais , Camundongos , Colite Ulcerativa/patologia , Necroptose , Colite/patologia , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Eur Heart J ; 45(4): 268-283, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38036416

RESUMO

BACKGROUND AND AIMS: Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS: The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS: The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cß/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS: Macrophage P2Y6R regulates phospholipase Cß/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.


Assuntos
Aterosclerose , Células Espumosas , Receptores Purinérgicos P2 , Humanos , Camundongos , Animais , Células Espumosas/metabolismo , Células Espumosas/patologia , Cálcio/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacologia , Proteômica , Tiamina Pirofosfato/metabolismo , Tiamina Pirofosfato/farmacologia , Aterosclerose/genética , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Camundongos Knockout , Fosfolipases/metabolismo , Fosfolipases/farmacologia
5.
J Ethnopharmacol ; 319(Pt 3): 117291, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37925002

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jin-Si-Wei (JSW), a traditional Chinese medicine (TCM) formula, have cognitive enhancing effect and delay the memory decline in an animal model of AD, which has been reported. However, the therapeutic mechanism of JSW in the treatment of AD remains unclear. AIM OF THE STUDY: This study aimed to verify the pharmacodynamics of JSW in the treatment of AD, and to explore its potential mechanism based on network pharmacology, molecular docking and experimental validation both in vitro and in vivo. MATERIALS AND METHODS: In this study, the underlying mechanism of JSW against AD was investigated by the integration of network pharmacology. Then, the core pathways and biological process of JSW were verified by experiment, including behavioral test and pathological and biochemical assays with 6-month-old APPswe/PS1ΔE9 transgenic (APP/PS1) mice in vivo and verified with Aß1-42-stimulated SH-SY5Y cells in vitro. At last, molecular docking was used to show the binding activity of each active ingredient to the core genes of JSW treatment in AD. RESULTS: A Drug-Ingredient-Target network was established, which included 363 ingredients and 116 targets related to the JSW treatment of AD. The main metabolic pathway of JSW treatment for AD is neuroactive ligand-receptor interaction pathway, and biological processes are mainly involved in Aß metabolic process. In vivo experiments, compared with APP/PS1 mice, the cognitive and memory ability of mice was significantly improved after JSW administration. In brain tissue of APP/PS1 mice, JSW could increase the contents of low-density lipoprotein receptor-related protein 1 (LRP-1), enkephalinase (NEP) and Acetyl choline (ACh), and decrease the contents of Aß1-42, amyloid precursor protein (APP) and receptor for advanced glycation end products (RAGE), decrease the vitality of cholinesterase (AChE) and choline acetyltransferase (ChAT). Besides, JSW could increase α-secretase expression and decrease ß/γ-secretase expression, and improve the number and morphology of synapses in CA1 region of the hippocampus of APP/PS1 mice. In vitro experiments, Drug-Containing Serum (JSW-serum) has a neuroprotective effect by reducing the apoptosis on Aß1-42-stimulated SH-SY5Y cells. Molecular docking results showed that 2-Isopropyl-8-methylphenanthrene-3,4-dione had strong binding activity with PTGS2, which maybe a potential ingredient for the treatment of AD. CONCLUSIONS: JSW improves AD in APP/PS1 mice, and this therapeutic effect may be achieved in part by altering the neuroactive ligand-receptor interaction pathway.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Ligantes , Simulação de Acoplamento Molecular , Farmacologia em Rede , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide
6.
Cell Death Dis ; 14(8): 495, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537172

RESUMO

Metastatic colorectal cancer (mCRC) is a major cause of cancer-related mortality due to the absence of effective therapeutics. Thus, it is urgent to discover new drugs for mCRC. Fucosyltransferase 8 (FUT8) is a potential therapeutic target with high level in most malignant cancers including CRC. FUT8 mediates the core fucosylation of CD276 (B7-H3), a key immune checkpoint molecule (ICM), in CRC. FUT8-silence-induced defucosylation at N104 on B7-H3 attracts heat shock protein family A member 8 (HSPA8, also known as HSC70) to bind with 106-110 SLRLQ motif and consequently propels lysosomal proteolysis of B7-H3 through the chaperone-mediated autophagy (CMA) pathway. Then we report the development and characterization of a potent and highly selective small-molecule inhibitor of FUT8, named FDW028, which evidently prolongs the survival of mice with CRC pulmonary metastases (CRPM). FDW028 exhibits potent anti-tumor activity by defucosylation and impelling lysosomal degradation of B7-H3 through the CMA pathway. Taken together, FUT8 inhibition destabilizes B7-H3 through CMA-mediated lysosomal proteolysis, and FDW028 acts as a potent therapeutic candidate against mCRC by targeting FUT8. FDW028, an inhibitor specifically targeted FUT8, promotes defucosylation and consequent HSC70/LAMP2A-mediated lysosomal degradation of B7-H3, and exhibits potent anti-mCRC activities.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias do Colo , Neoplasias Pulmonares , Neoplasias Retais , Animais , Camundongos , Autofagia/fisiologia , Proteólise , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias do Colo/metabolismo , Lisossomos/metabolismo
7.
Phytomedicine ; 115: 154851, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149963

RESUMO

BACKGROUND: The activation of P2Y14 receptor (P2Y14R) promotes osteoclast formation and causes neuropathic pain, exhibiting possible link to osteoarthritis (OA). Given lack of P2Y14R antagonist, the present study aims to search a novel P2Y14R antagonist with low toxicity and high activity from natural products as a possible drug candidate in treatment of OA. METHODS: The role of P2Y14R on OA was verified using P2Y14R knockout (KO) rats. Molecular docking virtual screening strategy and activity test in P2Y14R stably-expressed HEK293 cells were used to screen target compound from natural product library. The MM/GBSA free energy calculation/decomposition technique was used to determine the principal interaction mechanism. Next, the binding of target compound to P2Y14R was examined using cellular thermal shift assay and drug affinity responsive target stability test. Finally, the therapeutic effect of target compound was performed in monosodium iodoacetate (MIA)-induced OA mouse model. To verify whether the effect of target compound was attributed to P2Y14R, we establish the osteoarthritis model in P2Y14R KO mice to perform pharmacodynamic evaluation. Importantly, to investigate the potential mechanism by which target compound attenuate OA, expressions of the major transcription factors involved in osteoclast differentiation were detected by western blot, while markers of nerve damage in dorsal root ganglion (DRG) were evaluated by RT-qPCR and immunofluorescence techniques. RESULTS: Deficiency of P2Y14R alleviated pain behavior and cartilage destruction in MIA-induced OA rats. 14 natural compounds were screened by Glide docking-based virtual screening, among which paederosidic acid exhibited the highest antagonistic activity to P2Y14R with IC50 of 8.287 µM. As a bioactive component extracted from Paederia scandens, paederosidic acid directly interacted with P2Y14R to enhance the thermostability and decrease the protease sensitivity of target protein, which significantly inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis. More importantly, paederosidic acid suppressed osteoclast formation by downregulating expressions of NFAT2 and ATP6V0D2, as well as relieved neuropathic pain by decreasing expressions of CGRP, CSF1 and galanin in DRG. CONCLUSIONS: Paederosidic acid targeted P2Y14R to improve OA through alleviating osteoclast formation and neuropathic pain, which provided an available strategy for developing novel drug leads for treatment of OA.


Assuntos
Neuralgia , Osteoartrite , Camundongos , Ratos , Humanos , Animais , Simulação de Acoplamento Molecular , Células HEK293 , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ácido Iodoacético/efeitos adversos
8.
J Med Chem ; 66(9): 6315-6332, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37078976

RESUMO

As a member of purinoceptors, the P2Y6 receptor (P2Y6R) plays a crucial role in modulating immune signals and has been considered as a potential therapeutic target for inflammatory diseases. On the basis of the speculated probable conformation and binding determinants of P2Y6R, a hierarchical strategy that combines virtual screening, bioassays, and chemical optimization was presented. A potent P2Y6R antagonist (compound 50) was identified to possess excellent antagonistic activity (IC50 = 5.914 nM) and high selectivity. In addition, binding assays and chemical pull-down experiments confirmed that compound 50 was nicely bound to P2Y6R. Notably, compound 50 could effectively ameliorate DSS-induced ulcerative colitis in mice through inhibiting the activation of NLRP3 inflammasome in colon tissues. Moreover, treatment with compound 50 reduced LPS-induced pulmonary edema and infiltration of inflammatory cells in mice. These findings suggest that compound 50 could serve as a specific P2Y6R antagonist for treating inflammatory diseases and deserve further optimization studies.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
9.
Mini Rev Med Chem ; 23(19): 1893-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37055897

RESUMO

Glycogen synthase kinase-3 (GSK3) is one of the important serine/threonine protein kinases and has two isoforms, namely, GSK3α and GSK3ß. GSK3 inhibits glycogen synthase activity through phosphorylation. It plays a key role in various pathophysiological processes, such as differentiation, immunity, metabolism, cell death, and cell survival. Therefore, GSK3 has evolved as an important therapeutic target for treating neurological diseases, inflammatory diseases, and cancer. In addition, GSK3 regulates inflammatory processes through NF-κB-induced expression of various cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6. Moreover, GSK3 is reported to participate in many signaling pathways related to disease pathology, including PI3K/Akt, Wnt, Hedgehog, cyclic adenosine monophosphate, mitogen-activated protein kinase, and transforming growth factor-ß (TGF-ß). GSK3 has become a therapeutic target against some inflammatory diseases, including the inclusion body myositis, sepsis, and inflammatory bowel disease. Hence, several GSK3 inhibitors have been under evaluation as new therapeutic strategies in recent years. Two drugs targeting GSK3 have already entered clinical studies, including tideglusib and lithium carbonate. In this study, we analyzed nearly 30 different small-molecule GSK3 inhibitors reported in the past 4 years and classified them into four categories (thiazole, pyridine, F-substituted benzene, and others) according to their structure to conduct further literature research. Moreover, we summarized the optimal compounds and described the process of transformation from the lead compound to the optimal compound. In addition, we aimed to summarize the role of GSK3 in the pathogenesis of inflammatory diseases, with insights into the recent progress in the discovery of GSK3 inhibitors.


Assuntos
Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases , Fosforilação , Glicogênio Sintase Quinase 3 beta
11.
Curr Med Chem ; 30(16): 1824-1847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986534

RESUMO

BACKGROUND: STAT3 (signal transducer and activator of transcription 3) is a member of the STAT family of proteins that function as signal transducers and transcription factors. Previous research has demonstrated its importance in cell proliferation, differentiation, apoptosis, and immunological and inflammatory responses. Targeting the STAT3 protein has recently been hailed as a viable cancer therapeutic method. Even though none of these inhibitors have yet been exploited in clinical cancer therapy, a small number have made them into clinical trials, leading researchers to explore more promising inhibitors. METHODS: Based on the mechanism of STAT3 activation, several types of STAT3 inhibitors were described and summarized according to their origins, structures, bioactivity and mechanism of action. Direct inhibition of STAT3 mainly targeted one of the three distinct structural regions of the protein, namely the SH2 domain, the DNA binding domain, and the coiled-coil domain. RESULTS: The progress in STAT3 inhibitor discovery from 2010 to 2021 is comprehensively summarized in this review. STAT3 inhibitors are mainly classified into small molecule inhibitors, natural product inhibitors, and peptides/peptidomimetics. Moreover, it also covers relevant analogues, as well as their core framework. CONCLUSION: Small-molecule inhibitors of STAT3 like BP-1-102 and BTP analogues displayed great potential against various cancers, while natural products, as well as peptide and peptidomimetics, also showed promising application. Therefore, STAT3 has become a promising target with great research value, and the development of STAT3 inhibitors may provide more therapeutic strategies for STAT3-related diseases.


Assuntos
Neoplasias , Peptidomiméticos , Humanos , Fator de Transcrição STAT3 , Neoplasias/tratamento farmacológico , Peptídeos/química , Proliferação de Células
12.
Drug Discov Today ; 28(1): 103394, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223858

RESUMO

Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.


Assuntos
Fucosiltransferases , Neoplasias , Humanos , Fucosiltransferases/química , Fucosiltransferases/metabolismo , Glicosilação , Neoplasias/tratamento farmacológico , Proliferação de Células
13.
Expert Opin Ther Pat ; 32(9): 1027-1042, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914778

RESUMO

INTRODUCTION: Lysine-specific demethylase 1 (LSD1), which belongs to the demethylase of non-histone proteins, is believed to promote cancer cell proliferation and metastasis by modifying histones. LSD1 dysfunction may play a key role in a variety of cancers, such as acute myeloid leukemia and non-small cell lung cancer, indicating that LSD1 is a promising epigenetic target for cancer therapy. Many different types of small molecule LSD1 inhibitors have been developed and shown to inhibit tumor cell proliferation, invasion, and migration, providing a new treatment strategy for solid tumors. AREAS COVERED: This review summarizes the progress of LSD1 inhibitor research in the last four years, including selected new patents and article publications, as well as the therapeutic potential of these compounds. EXPERT OPINION: Natural products offer a promising prospect for developing novel potent LSD1 inhibitors, as structural design and activity of irreversible and reversible inhibitors have been continuously optimized since the discovery of the LSD1 target in 2004. The use of 'microtubule-binding agents' and 'dual-agent combination' has recently become a new anticancer technique, reducing the resistance and adverse reactions of traditional drugs. Several microtubule-binding drugs have been used successfully in clinical practice, providing structural scaffolds and new ideas for the development of safer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores Enzimáticos/farmacologia , Histona Desmetilases , Histonas/química , Histonas/metabolismo , Humanos , Patentes como Assunto
14.
Cell Death Discov ; 8(1): 238, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501301

RESUMO

As the modulation of serine/arginine-rich splicing factor 3 (SRSF3) may be therapeutically beneficial to colorectal cancer (CRC) treatment, the identification of novel SRSF3 inhibitors is highly anticipated. However, pharmaceutical agents targeting SRSF3 have not yet been discovered. Here, we propose a functional SRSF3 inhibitor for CRC therapy and elucidate its antitumor mechanisms. We found high expression of SRSF3 in 70.6% CRC tissues. Silencing SRSF3 markedly inhibits the proliferation and migration of CRC cells through suppression of its target gene 24-dehydrocholesterol reductase (DHCR24). This is evidenced by the links between SRSF3 and DHCR24 in CRC tissues. The novel SRSF3 inhibitor SFI003 exhibits potent antitumor efficacy in vitro and in vivo, which drives apoptosis of CRC cells via the SRSF3/DHCR24/reactive oxygen species (ROS) axis. Moreover, SFI003 is druggable with suitable pharmacokinetic properties, bioavailability, and tumor distribution. Thus, SRSF3 is a novel potential therapeutic target for CRC. Its inhibitor SFI003 may be developed as an anticancer therapeutic.

15.
Front Immunol ; 13: 870183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432308

RESUMO

The fate of infiltrating neutrophils in inflamed joints determines the development of acute gouty arthritis (AGA). GPR105 highly expressed in human neutrophils is sensitive to monosodium urate crystals (MSU); nevertheless, the roles of GPR105 in AGA remain unclear. Here, we show that GPR105 is significantly upregulated in peripheral polymorphonuclear neutrophils of AGA patients. GPR105 knockout (GPR105-/-) prevented NETosis and induced apoptosis of neutrophils under MSU exposure, as well as attenuating inflammatory cascades in AGA. Mechanistically, GPR105 deletion activated cAMP-PKA signals, thereby disrupting Raf-Mek1/2-Erk1/2 pathway-mediated NADPH oxidase activation, contributing to inhibition of NETosis. Whereas, cAMP-PKA activation resulting in GPR105 deficiency modulated PI3K-Akt pathway to regulate apoptosis. More importantly, suppression of cAMP-PKA pathway by SQ22536 and H-89 restored NETosis instead of apoptosis in GPR105-/- neutrophils, promoting MSU-induced gout flares. Interestingly, lobetyolin was screened out as a potent GPR105 antagonist using molecular docking-based virtual screening and in vitro activity test, which efficiently attenuated MSU-induced inflammatory response interacting with GPR105. Taken together, our study implicated that modulating cell death patterns between NETosis and apoptosis through targeting GPR105 could be a potential therapeutic strategy for the treatment of AGA.


Assuntos
Gota , Neutrófilos , Apoptose , Gota/metabolismo , Gota/fisiopatologia , Humanos , Simulação de Acoplamento Molecular , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Úrico/efeitos adversos
16.
Eur J Med Chem ; 227: 113933, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689072

RESUMO

The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost symmetrical P2Y14 binding domain, we describe the structural optimization of previously identified virtual screening hits 6 and 7 that result in the development of P2Y14R antagonists with a novel 2-phenyl-benzoxazole acetamide chemical scaffold. Notably, compound 52 showed potent P2Y14R antagonistic activity (IC50 = 2 nM), and a stronger inhibitory effect on MSU-induced inflammatory in vitro, better than a previously described P2Y14R antagonist PPTN. In vivo evaluation demonstrated that compound 52 also had satisfactory inhibitory activity on the inflammatory response of gout flares in mice. Moreover, P2Y14R antagonist 52 decreased paw swelling and inflammatory cell infiltration through cAMP/NLRP3/GSDMD signaling pathways in MSU-induced acute gouty arthritis mice. The discussions on the binding mechanism that employ MM/GBSA free energy calculations/decompositions also provide some useful clues for further structural designing of compound 52. Taken together, 2-phenyl-benzoxazole acetamide derivative 52 with potent P2Y14R antagonistic activity and in vivo potency could be a promising strategy for gout therapy and deserves further optimization.


Assuntos
Acetamidas/farmacologia , Benzoxazóis/farmacologia , Descoberta de Drogas , Gota/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Acetamidas/síntese química , Acetamidas/química , Animais , Benzoxazóis/síntese química , Benzoxazóis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Gota/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2/síntese química , Antagonistas do Receptor Purinérgico P2/química , Relação Estrutura-Atividade
17.
Curr Top Med Chem ; 21(28): 2574-2592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34315367

RESUMO

Peptidomimetics are studied for medicinal application because of their ability to mimic hierarchical structures of peptides and proteins. To break the limitation and expand the peptidomimetics family, a new class of peptidomimetics based on peptide nucleic acids (PNAs) backbone - "γ-AApeptides" was developed. Compared with previous peptidomimetics, γ-AApeptides possess prominent advantages such as resistance to proteolytic degradation, enhanced chemodiversity, good selectivity and outstanding bioactivity. The synthesis of γ-AApeptides is carried out using a ''monomer building block'' strategy which is facile and efficient. γ-AApeptides are able to mimic primary and secondary structures of therapeutic peptides, which make them promising candidates for molecular probes and potential drug leads. In the past decade, several interesting structures and applications of γ-AApeptides have been developed by different approaches such as structure-based design, combinatorial library screening, and peptides selfassembly and folding. By following the mechanism of host-defense peptides (HDPs), antibiotic γ- AApeptides showed broad-spectrum activity. At the same time, γ-AApeptides can be used for combinatorial library screening because of their structural stability and their chemodiversity. Anticancer agents, anti-T2DM (Type 2 diabetes mellitus) agents, anti-HIV (human immuno-deficiency virus) agents and anti-Alzheimer's disease agents were developed by combinatorial screening and rational design. Furthermore, γ-AApeptides as biopolymers, nanomaterials, supramolecular structures and self-assembly architectures were studied due to their unique backbone structures. Therefore, γ-AApeptides may play an important role in the development of peptidomimetics.


Assuntos
Amidas/farmacologia , Amidas/uso terapêutico , Desenho de Fármacos , Peptidomiméticos/classificação , Peptidomiméticos/síntese química , Doença de Alzheimer/tratamento farmacológico , Amidas/síntese química , Amidas/classificação , Animais , Fármacos Anti-HIV , Antineoplásicos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Peptidomiméticos/química , Peptidomiméticos/uso terapêutico
18.
Pharmacology ; 106(3-4): 189-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621976

RESUMO

AIM: It has been reported that necrostatin-1 (Nec-1) is a specific necroptosis inhibitor that could attenuate programmed cell death induced by myocardial ischemia/reperfusion (I/R) injury. This study aimed to observe the effect and mechanism of novel Nec-1 analog (Z)-5-(3,5-dimethoxybenzyl)-2-imine-1-methylimidazolin-4-1 (DIMO) on myocardial I/R injury. METHODS: Male SD rats underwent I/R injury with or without different doses of DIMO (1, 2, or 4 mg/kg) treatment. Isolated neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment with or without DIMO (0.1, 1, 10, or 100 µM). Myocardial infarction was measured by TTC staining. Cardiomyocyte injury was assessed by lactate dehydrogenase assay (LDH) and flow cytometry. Receptor-interacting protein 1 kinase (RIP1K) and autophagic markers were detected by co-immunoprecipitation and Western blotting analysis. Molecular docking of DIMO into the ATP binding site of RIP1K was performed using GLIDE. RESULTS: DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. However, the DIMO 4 mg/kg dose was ineffective. DIMO at the dose of 0.1 µM decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. I/R or OGD/R increased RIP1K expression and in its interaction with RIP3K, as well as impaired myocardial autophagic flux evidenced by an increase in LC3-II/I ratio, upregulated P62 and Beclin-1, and activated cathepsin B and L. In contrast, DIMO treatment reduced myocardial cell death and reversed the above mentioned changes in RIP1K and autophagic flux caused by I/R and OGD/R. DIMO binds to RIP1K and inhibits RIP1K expression in a homology modeling and ligand docking. CONCLUSION: DIMO exerts cardioprotection against I/R- or OGD/R-induced injury, and its mechanisms may be associated with the reduction in RIP1K activation and restoration impaired autophagic flux.


Assuntos
Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Imidazóis/química , Indóis/química , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Animais Recém-Nascidos , Proteína Beclina-1/metabolismo , Catepsina B/metabolismo , Catepsina L/metabolismo , Morte Celular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Homologia Estrutural de Proteína
19.
Curr Med Chem ; 28(3): 569-582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31971103

RESUMO

BACKGROUND: Inflammation is the body's immune system's fast coordinating response to irritants caused by pathogens, external injuries, and chemical or radiation effects. The nucleotidebinding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. The dysfunction of NLRP3 inflammasome contributes to various pathogeneses of complex diseases, such as uncontrolled infection, autoimmune diseases, neurodegenerative diseases, and metabolic disorders. This review describes recent progress on the discovery of NLRP3 inflammasome inhibitors and their therapeutic potential. METHODS: Based on the mechanism of NLRP3 activation, several types of NLRP3 inhibitors are described and summarized according to their origins, structures, bioactivity, and mechanism of action. Structure-Activity Relationship (SAR) is also listed for different scaffolds, as well as effective pharmacophore. RESULTS: Over one-hundred papers were included in the review. The development of NLRP3 inhibitors has been described from the earliest glyburide in 2001 to the latest progress in 2019. Several series of inhibitors have been categorized, such as JC-series based on glyburide and BC-series based on 2APB. Many other small molecules such as NLRP3 inhibitors are also listed. SAR, application in related therapeutic models, and five different action mechanisms are described. CONCLUSION: The findings of this review confirmed the importance of developing NLRP3 inflammasome inhibitors. Various NLRP3 inhibitors have been discovered as effective therapeutic treatments for multiple diseases, such as type II diabetes, experimental autoimmune encephalomyelitis, stressrelated mood disorders, etc. The development of a full range of NLRP3 inflammasome inhibitors is still at its foundational phase. We are looking forward to the identification of inhibitory agents that provide the most potent therapeutic strategies and efficiently treat NLRP3 inflammasome-related inflammatory diseases.


Assuntos
Inflamassomos/antagonistas & inibidores , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Transtornos do Humor/tratamento farmacológico , Relação Estrutura-Atividade
20.
Int Immunopharmacol ; 83: 106383, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193099

RESUMO

Kelch-like ECH-associated protein (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) protein-protein interaction has become an important drug target for the treatment of Alzheimer's disease. In this study, we found a novel piperine derivative (HJ22) synthesized by our group with great ability to bind to Keap-1 and activate Keap1-Nrf2-ARE signaling pathway in vitro, driving us to investigate the beneficial effects of HJ22 on ibotenic acid (IBO)-induced neurological disorders in rats and underlying mechanisms. Interestingly, HJ22 significantly ameliorated IBO-induced cognitive impairment in Morris water maze, Y-maze and passive avoidance tests. Moreover, HJ22 significantly attenuated cholinergic dysfunction and neuronal morphological changes via inhibiting apoptotic cell death induced by IBO. Notably, HJ22 inhibited the interaction between Keap1 and Nrf2, and subsequently up-regulated nuclear Nrf2 expression, thereby inhibiting oxidative stress and Thioredoxin-interacting protein (TXNIP)-mediated Nod-like receptor protein 3 (NLRP3) inflammasome activation. These findings demonstrated that HJ22 exhibited potent therapeutic effects against IBO-induced cognitive impairment by alleviating cholinergic damage, oxidative stress, apoptosis and neuroinflammation, which might be partly attributed to its inhibitory activity on Keap1-Nrf2 protein-protein interaction.


Assuntos
Alcaloides , Benzodioxóis , Disfunção Cognitiva , Inflamassomos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Neurônios , Piperidinas , Alcamidas Poli-Insaturadas , Animais , Humanos , Ratos , Alcaloides/síntese química , Alcaloides/uso terapêutico , Apoptose , Benzodioxóis/síntese química , Benzodioxóis/uso terapêutico , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Ácido Ibotênico , Inflamassomos/metabolismo , Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neurônios/fisiologia , Estresse Oxidativo , Piperidinas/síntese química , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/síntese química , Alcamidas Poli-Insaturadas/uso terapêutico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...